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Rate equation of the 4 + A — A reaction with probability of reaction and diffusion
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We study the coagulation reaction 4 + 4 — A4 with probability p of reaction in a one-dimensional lat-
tice. We show that dp/dt=—pT'|, where p(?) is the density of particles and I' (¢) is the density of
nearest-neighbor occupied sites. From the analysis of the crossover between the reaction-controlled-
reaction and the diffusion-controlled-reaction regimes an approximate scaling ansatz for I'; and p for
different values of p is proposed. Using this scaling, the collapse of Monte Carlo data improves when p
decreases. From this scaling an analytical approximation of the density is found which agrees well with

the numerical results of p(¢) for different values of p.

PACS number(s): 05.40.+j, 82.20.Mj, 02.50.—r

I. INTRODUCTION

In the past decade much effort has been dedicated to
the study of diffusion-reaction systems, see, e.g., [1,2].
This is mainly due to the anomalous behavior that ap-
pears when the diffusion occurs on nonhomogeneous
substrata (e.g., fractals [3,4] and multifractals [5]) or on
one-dimensional systems. This behavior cannot be pre-
dicted by mean-field approximations.

In the coagulation reaction 4 + 4 — A the particles
diffuse independently and react instantaneously and ir-
reversibly when two of them meet. The density p of par-
ticles as a function of time ¢ behaves, for long times, as
[27476]9

t 57 ifd <2,
P= ) (1)
t otherwise ,
where d; is the spectral dimension [7] of the substratum
where the particles diffuse. For some fractal structures
d; <2 and for d-dimensional Euclidean lattices, d; =d.

Recently extensive numerical studies of the annihila-
tion reaction 4 + 4 —0, with partial reaction probability
were done [8] (for a related model see [9]). We modify
the model in the same way, so that when two particles
collide they react with probability p (0 <p =1, see Sec. II
for more details). In many physical and chemical pro-
cesses, the reaction does not take place instantaneously
and the species can collide many times before the reac-
tion occurs. This can be the case when the reaction de-
pends on the orientation of the molecules or when the
species must overcome an effective energy barrier to react
[10]. This is the motivation for the introduction of p into
the model.

In the present work we analyze the behavior of p(¢) for
the reaction 4 + A — A with the probability p of reac-
tion in a one-dimensional lattice.

As we will see below, Eq. (1) holds at very long times
independently of the value of p. That is p(¢)~¢~!/> when
t— . Therefore we will focus our attention on the
short- and intermediate-time regimes, where p(¢) strongly

1063-651X/93/48(5)/3309(5)/$06.00 48

depends on p.

The paper is organized as follows. In Sec. II we
present the model and the Monte Carlo simulation. In
Sec. III we obtain the rate equation. This equation shows
that the reaction rate, dp/dt, is proportional to the num-
ber I'; of pairs of nearest-neighbor (NN) occupied sites
per lattice site. In Sec. IV we analyze the behavior of I';
as a function of p. We found that for p <<1, at short
times (large p) the reaction is controlled by reaction pro-
cesses. At very long times (small p) the reaction is con-
trolled by diffusion. We also obtain a scaling function of
I'; and p for all values of p and p. Using a simple func-
tion which fulfills the scaling form, in Sec. V an approxi-
mation of p(t) is obtained. We compare this approxima-
tion with the Monte Carlo data. Finally, in Sec. VI we
state our conclusions.

II. THE MODEL AND THE
MONTE CARLO SIMULATION

In the model the particles perform a random walk be-
tween NN sites of a one-dimensional lattice of length
L =100000. We use periodic boundary conditions in or-
der to avoid edge effects.

At t =0 each site of the lattice is occupied by a particle
with probability p, (po=1), which is the initial particle
density. A value of p,=0.8 was used. After that the
diffusion starts.

At each Monte Carlo step, one of the n(t) particles
present in the lattice at time ¢, randomly chosen, attempts
to jump to any of the NN sites with equal probability 1.
The following situations may appear. (i) If the chosen
site is empty, the particle jumps. (ii) If the chosen site is
occupied by another particle, they react with probability
p. If successful, the selected particle is removed from the
lattice and the number of particles is decreased by 1,
n(t)—n(t)—1. (iii) Otherwise the jump is not performed
and the selected particle remains at its position. This
means that the selected particle jumps to the chosen site,
collides with the other particle present at this site, and is

3309 ©1993 The American Physical Society



3310

reflected back with probability (1—p) to its original posi-
tion.

In the simulation, a time interval equal to 1 is defined
as the time needed for the n (¢) particles to have, on aver-
age, one change to jump. Specifically after each Monte
Carlo step, time ¢ is increased by 1/n(?).

We define the density p(¢) as the number of particles
per lattice site at time ¢. The function I'; is defined as the
number of pairs of NN occupied sites per lattice site at
time t. p(z) and I';(¢) are obtained averaging over many
(typically 20-30) samples; dp/dt is obtained by deriving
p(t) numerically.

III. THE RATE EQUATION

In this section we will obtain a relation between dp /dt
and the function I';. Let us denote by P(n—n—1) the
probability for a reaction to take place in a Monte Carlo
step. The change of the density in a reaction is
8p=—1/L and the time increases by 8¢ =1/n. Then one
has

iﬂ=§£P(n—>n—-l). (2)
dt 5t

Let us consider a given pair of NN occupied sites. The
probability for one of these two particles to be selected at
random in a Monte Carlo step is 2/n. The probability
for the selected particle to react with the other one is Jp.
Then,

21
P —1)=== , 3
(n—n—1) 5P (3)
where n, is the number of NN pairs present in the system
at time . From Egs. (2) and (3) one obtains

dap _ _ r 4
a v @
where I')=n, /L is the number of pairs of NN occupied
sites per lattice site.

It is also possible to obtain Eq. (4) using the master
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FIG. 1. log[—(1/p)dp/dt] (points) and log;,I'; (lines)

versus logop, for different values of p: p =1 (circles), p =0.1
(squares), and p =0.01 (full triangles).
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equation of the process. This method is presented in the
Appendix.

Figure 1 shows numerical results of —(1/p)dp/dt and
I'; versus p in log-log scales for different values of p. The
superposition of the curves for a given value of p supports
the validity of Eq. (4).

IV. THE SCALING FUNCTION

In the simulations we start with a random distribution
of particles. In this case,

Fl :p2 5 (5)
and then [see Eq. (4)],
dp__ 2
s pp? . (6)

This is the classical textbook second-order (dp/dt < p*
with x =2) reaction which is used in all dimensional sys-
tems and for all times [in our case Eq. (6) is strictly valid
only at ¢t =0, see below]. This classical behavior can be
obtained by assuming that the reaction time (the mean
time that particles need to react when they are close to
each other) is much larger than the diffusion time (the
mean time between collisions). In this so-called reaction-
controlled reaction (RCR) the diffusion effects are
neglected and the mean-field approximation holds.

The anomalous behavior can appear in the so called
diffusion-controlled reaction (DCR) when diffusion effects
are relevant. This is, for example, the case of Eq. (1) for
d=1 (and p =1), where one obtains a third-order reac-
tion (dp/dt = p?).

In our model, when time increases, the initial random
distribution of particles changes. In a work by Doering
and ben-Avraham [11] the interparticle distribution func-
tion for the reaction 4 + A — A is studied, with p =1 in
one dimension. From this distribution [see Eq. (1.4) of
Ref. [11]], for a discrete space (the lattice) and assuming
small values of p, one can obtain

F1=1p3, p=1, @)
2
when t— . Then, from Eq. (4),
i&: —1 3 = 1
1 SP P . (8)

Let us note that this equation is equal to Eq. (1.3) of
Ref. [11] [the diffusion coefficient D in Eq. (1.3) is equal
to 1 in our discrete model]. This is a verification of Eq.
(4).

On the other hand, when p—0 (¢ — o0 ) the average in-
terparticle distance is very large. The diffusion time is
much longer than the reaction time. Then one expects
that the rate equation would be independent of p.
Specifically, in Fig. 4 we plot log;up against log;ot. Note
that all curves, which corresponds to different values of p,
tend to collapse for very long times. As the dependence
on p disappears, Eq. (8) must be valid for all p. Then, us-
ing Eq. (4), when t — o,

17 5
p2p
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In summary, it is expected that for very small values of
t (large p) T';=p? [Eq. (5), RCR regime] and for large ¢
(small p) T'; is given by Eq. (9) (DCR regime). These
behaviors are verified in Fig. 2, where we plot the Monte
Carlo data of log,,I" against log,go for p =0.01. The in-
tersection of these two asymptotical behaviors occurs at
the crossover density p., given by

2
Pc= - D . (10)
In order to analyze the universal (independent of p)
behavior of I'; as a function of p, we propose the follow-
ing ansatz:

r
—=pf(p/p.), an
Pc
where
% if x>1,
FI= 052 i x <1 (12)

In Fig. 3 we plot the Monte Carlo data of I';/(pp,.)
against p/p,., in log-log scales, for different values of p.
The observed data collapse supports the scaling ansatz.
But we must make the following comment. In the simu-
lation we start with a random distribution of particles.
Then, at ¢ =0, one has (p,I';)=(pg,pd). This point is lo-
cated above the data collapse curve (it is in the asymptot-
ic straight line I'y /pp. =p/p, of slope 1). For this reason
a small separation of I'; from the data collapse curve ap-
pears for large values of p. The largest separation occurs
for the case p=1. For p =0.1 and p =0.01 this separa-
tion is very small and cannot be detected in the scale of
Fig. 3.

In general, we expect that the collapse of the data im-
proves when po/p,=pym/2p increases. That is, if the
starting point x,=p,/p. >>1, and then the region where
x >>1 really exists [see Eq. (12)], the numerical data will
satisfy the scaling ansatz. As p,=1, this condition can
only be fulfilled for small values of p.

0

FIG. 2. logi,I'; versus log,gp for p=0.01. The crossover
point is shown at p=p.. The asymptotic behaviors of Egs. (5)
and (9) are represented by the straight lines.
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FIG. 3. Scaling of logo(I';/pp.) versus log(p/p.) for

different values of p: p =1 (circles), p=0.1 (squares), and
p=0.01 (full triangles). The line represents the approximation
of Eq. (13).

V. AN APPROXIMATION FOR p(t)

A simple function which fulfills the scaling form is

x2

x+1°

f(x)= (13)
We will use f as an approximation to the scaling func-
tion. From Egs. (11) and (13) one has

3
o - (14)

ptpe

In Fig. 3 one can see that function I'; agrees approxi-
mately with the data collapse curve. Integrating Eq. (4)
with I'; given by Eq. (14) one obtains the approximate
density p,

Ty

_ 1+V1+2a()
Pa(1)=pc 2a (1) ’ 15
with
pe 1 [p |
a(t)==—"+=|—= | +pp,t . (16)
Po 2 |Po p

In Fig. 4 we present log,u0, and the Monte Carlo data
of log,op versus log, ¢ for different values of p. The agree-
ment between p, and p is reasonably good. Let us note
that the logarithmic scale used is more appropriate than
the linear scale for p in order to analyze the difference be-
tween p, and p for a fixed value of ¢.

It is possible to use other approximations to the scaling
function f. For example,

flx)= x> 17)
(x +1/x +2b)172°
or
372
f(x) d (18)
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FIG. 4. logup versus logt for different values of p: p=1
(circles), p =0.1 (squares), and p=0.01 (full triangles). The
points are numeric results and the curves are the approximation
of Eq. (16). A value of p,=0.8 was used for all curves.

with x =p/p., and where b and k are adjustable parame-
ters. Nevertheless we prefer to use Eq. (13) due to its
simplicity and because using this equation one can obtain
a close form for the approximate density p, [see Eq. (15)].
Moreover, the p, obtained is a good approximation for
the true p.

VI. CONCLUSIONS

The main conclusions for the imperfect coagulation re-
action 4 + 4 — A in a one-dimensional lattice are as fol-
lows.

(i) The rate equation (4) has been deduced and verified
by Monte Carlo data. From this equation one concludes
that the behavior of p(t) for all ¢ depends on the density
of pairs of NN occupied sites, and it is not necessary to
know the density of pairs at large distances.

(ii) From the analysis of the behavior of I'; at short
J

Pi{S}(t+8t)=si—l(1_Si )(l“si+1)/2n [ JoXe]
+(1—=s;_y)s;(1=s; 1 )(1—1/n) O@O

+(1"“S’-_,1)(1—"Si)si+1/2n ooe
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times (RCR regime) and at long times (DCR regime), the
scaling ansatz of Egs. (11) and (12) is proposed. The
Monte Carlo data supports this scaling, specially when
po>>p.=(2/m)p. Let us stress that from the numerical
data we cannot affirm that the exact (and unknown) p,(¢)
will fulfill the scaling exactly. We only conclude that the
scaling ansatz works for our Monte Carlo data, and this
approximation improves when p,/p, increases.

(iii) Using a simple function which fulfills the scaling
form, we obtain an analytical approximation of the densi-
ty p, [see Eqgs. (15) and (16)]. The agreement between p,
and the Monte Carlo data for the density is reasonably
good for all times and for different values of p (see Fig. 4).

Very recently an alternative analytical diffusion-
equation-type approximation [12] has been developed to
study the crossover between the RCR and DCR regimes.
Using this method an approximation for p(t) is obtained,
which improves for large values of p and small initial
density p,. Our approximate scaling form [Egs. (11) and
(12)] becomes more accurate in the opposite region, that
is, for small values of p and large p,,.
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APPENDIX

We present a deduction of Eq. (4) by using the master
equation of the process. Let us denote the occupation
number of a generic site i by s;. If site i is occupied then
s; =1, otherwise s;=0. If we have at time ¢ any given
configuration {s}, the occupation probability for site i at
time ¢ =85t is

+s; 185 (1—=s5; . P[(1—p)/2n+1—1/n] @@O

+si#1(1—s,- )si+l/n [ Jo ]
+(1—s; _1)8;8; 1 [(1—p)/2n+1—1/n]

+s5; 1885 [(1—p)/n+1—1/n] ee® .

At the right side we show the configuration of sites
(i —1,i,i +1) which corresponds to each term of
P;(;y(t+8t). Symbol @ (O) denotes an occupied (empty)
site at time . Remember that 1/n is the probability of

oy _ J

(A1)

f

selecting a particle in a Monte Carlo step and that | is
the probability of jumping to the right or to the left (see
Sec. II). Simplifying Eq. (Al) and averaging over
configurations {s} we obtain
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P(t+8t)=P,(t)+ Tln—[PH1(t)+P,»,1(t)—2P,-(t)]

__2%<si(si—1+si+l)> ’ (A2)
where P;(1)=(s; ).

In the simulations wé begin at ¢t =0 with random
configurations in a lattice with periodic boundary condi-
tions. As there are no privileged sites in the lattice, then
on average the particle distribution will be uniform.
Therefore P,=P; and (s;s;4,)=(s;s;;,) for all i,j.
Then,

P(t+8t)—P(t)=’“‘%<sisi+1). (A3)

3313

The occupation probability per lattice site P(¢), now
independent of i, is equivalent to the global density p(z).
Knowing that in the simulations 8t =1/n, we have

dp
dt
Because there are no privileged sites, averaging s;s;

over configurations is equal to averaging over all sites of
one configuration,

=—p{sisi1) - (A4)

n;

1 L
<Sisi+1)=f 2SS = (A35)
j=1

L ’

where s; =s;. Then I'}={s;s;,,) and Eq. (A4) is
equal to Eq. (4).
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